Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Журнал "Гастроэнтерология" Том 52, №4, 2018

Вернуться к номеру

B.coagullans в лечении гастроэнтерологических заболеваний воспалительной и функциональной природы: эффективность с позиций доказательной медицины

Авторы: Высочина И.Л.
ГУ «Днепропетровская медицинская академия Министерства здравоохранения Украины», г. Днепр, Украина

Рубрики: Гастроэнтерология

Разделы: Справочник специалиста

Версия для печати


Резюме

Проведено аналіз баз даних PubMed, Scopus, Web of Science, MedLine, The Cochrane Library, CyberLeninka, РІНЦ у контексті пошуку інформації щодо ефективності B.coagullans у лікуванні гастроентерологічних захворювань запальної і функціональної природи. Системний аналіз інформації, наведений у даній статті, повністю відповідає міжнародним рекомендаціям щодо систематичних методів пошуку літератури і містить інформацію про роль, значення, переваги, безпеку та ефективність даного штаму (GRAS Notice No. GRN 000660) і можливості застосування пробіотиків і препаратів B.сoagulans у людини, з доказовою базою можливості розширення показань для застосування споровмісних пробіотиків B.coagullans (у тому числі і для препарату Лактовіт Форте), зокрема при синдромі подразненого кишечника.

Проведен анализ баз данных PubMed, Scopus, Web of Science, MedLine, The Cochrane Library, CyberLeninka, РИНЦ в контексте поиска информации по эффективности B.coagullans в лечении гастроэнтерологических заболеваний воспалительной и функциональной природы. Системный анализ информации, представленный в данной статье, полностью соответствует международным рекомендациям по систематическим методам поиска литературы и содержит информацию о роли, значении, преимуществах, безопасности и эффективности данного штамма (GRAS Notice No. GRN 000660) и возможностях применения пробиотиков и препаратов B.сoagulans у человека с доказательной базой возможности расширения показаний для применения споросодержащих пробиотиков B.coagullans (в том числе и для препарата Лактовит Форте), в частности при синдроме раздраженного кишечника.

The analysis of PubMed, Scopus, Web of Science, MedLine, The Cochrane Library, CyberLeninka, RISC databases was performed in the context of searching for information on the effectiveness of B.coagulans in the treatment of gastrointestinal diseases of inflammatory and functional nature. The system analysis of the information presented in this article fully complies with international recommendations on systematic methods of literature search and contains information on the role, significance, advantages, safety and effectiveness of this strain (GRAS Notice No. GRN 000660) and the options of using probiotics and B.coagulans preparations in humans, with evidence of the possibility of expanding indications for the administration of the probiotic B.coagulans (Laktovit Forte), in particular in irritable bowel syndrome.


Ключевые слова

огляд; B.coagullans; Лактовіт Форте; гастроентерологічні захворювання запальної і функціональної природи

обзор; B.coagullans; Лактовит Форте; гастроэнтерологические заболевания воспалительной и функциональной природы

review; B.coagulans; Laktovit Forte; gastrointestinal diseases of inflammatory and functional nature

Термин «пробиотики» определяется как «живые микроорганизмы, которые при введении в адекватном количестве приносят пользу здоровью хозяина» (WHO, 2002) [143]. Применение пробиотических препаратов как средства профилактики и лечения различных состояний и болезней у человека занимает центральное место в современной медицинской практике, и именно с пробиотиками сегодня связывают не только контроль работы желудочно-кишечного тракта, все виды обмена веществ, процессы пищеварения, детоксикационную функцию организма, иммунную защиту, но и поддержание интеллекта, психоэмоциональные функции, физическое и психическое здоровье, что в целом интегрирует качество и продолжительность жизни человека (The Common Fund’s Human Microbiome Project; HMP) [1, 6, 14, 15, 18].

Информационный поиск в системе PubMed по термину «пробиотик» предлагает сегодня для изучения 19 699 англоязычных статей, среди которых исследованию B.сoagulans посвящены 255 научных публикаций; в поисковой системе cyberleninka.ru. — около 50 научных работ; elibrary.ru — 166 статей и 8 результатов поиска по запросу «Probiotic Bacillus coagulans» в системе cochrane.org, в то время как поиск по специализированному сайту https://www.science.gov/topicpages/b/bacillus+coagulans+gbi-30# предлагает по заявленной проблеме более 400 публикаций.

Bacillus coagulans: историческая справка

Bacillus coagulans представляет собой грамположительную, спорообразующую, микроаэрофильную бактерию, которая в 1915 году была идентифицирована как причина вспышки коагуляции в молоке, упакованном конденсатом Айовы, и описана B.W. Hammer как Bacillus coagulans [15, 72].

Позже, в 1932 году, учеными Horowitz-Wlassowa и Nowotelnow она была описана как Lactobacillus sporogenes (L.sporogenes), т.к. филогенетически очень близка к Lactobacillus [78, 81]. Проведение более детального изучения биохимических и биологических свойств L.sporogenes/B.coagulans обусловило необходимость проведения реклассификации данной бациллы, и с седьмого издания «Руководства по детерминативной бактериологии» Bergey’s (1957) используется таксономическое номенклатурное название данной бактерии — Bacillus coagulans. Она занимает промежуточное положение между двумя родами — Bacillus и Lactobacillus [15, 25, 16, 100].

Род Bacillus идентифицируется как группа обитателей почвы, однако Bacillus spp. могут быть выделены из различных источников — воздуха, воды, кишечника человека и животного, овощей и пищевых продуктов [6, 19, 77]. Они представляют собой наиболее гетерогенную группу по фенотипическим и генотипическим признакам. Таксономические изменения рода Bacillus связаны с идентификацией 318 видов, представленных в «Перечне прокариотических имен с постоянной номенклатурой», позже, с появлением молекулярной таксономии, группа исследователей [5, 34, 91] разделила 51 отдельный вид Bacillus на пять филогенетических кластеров. Последующие молекулярно-генетические исследования рода Bacillus указывают на необходимость более тщательного контроля безопасности штаммов и жесткого отбора и идентификации кандидатов в пробиотики, т.к. не все разновидности Bacillus являются абсолютно безопасными для человека, поэтому возможность использования споровых пробиотиков у человека должна иметь оценку безопасности уровня Gras.

Общая характеристика бактерий рода Bacillus

Скрининг потенциальных пробиотических функциональных возможностей штаммов Bacillus в разных моделях in vitro и in vivo показал их более высокую кислотоустойчивость и лучшую стабильность при обработке теплом и хранении при низкой температуре [13, 41], также было подтверждено наличие антиоксидантных, антимикробных, иммуномодулирующих свойств штаммов Bacillus и их участие в ферментации пищи [74, 118, 130, 132]. Среди преимуществ спорообразующих бацилл — способность продуцировать внеклеточные ферменты, поэтому Bacillus spp. используется в пищевой промышленности для производства пищевой амилазы, глюкоамилазы, протеазы, пектиназы и др. [41, 90, 84]. Различные виды Bacillus также используются для производства дополнительных нутрицевтиков, включая витамины (рибофлавин, кобаламин, инозит) и каротиноиды для синтеза некоторых пищевых добавок [83, 104].

Bacillus coagulans — термо- и кислотоустойчивая бактерия. Линия: бактерии [23346]; Firmicutes [3660]; бациллы [1514]; Bacillales [1018]; Bacillaceae [455]; Bacillus [205]; Bacillus coagulans [1].

Биологические свойства B.coagulans

Оптимальная температура для роста B.coagulans составляет 50,8 °С; диапазон допустимых температур от 30 до 55 °С. Способность выживать при высоких температурах и образовывать споры привлекательна с точки зрения выживания B.coagulans и потенциального использования этого штамма для пробиотического использования у человека [39, 80].

B.coagulans — транзиторный колонизирующийся пробиотик, т.к. его споры выводятся из организма с фекалиями в течение приблизительно семи дней после прекращения приема [78]. С точки зрения фармакокинетики после перорального приема споровой формы пробиотика B.coagulans в желудке у человека под действием вспенивания желудочным соком и кислым рН споровая оболочка бактерии поглощает воду, набухает, и на уровне двенадцатиперстной кишки споры прорастают и быстро размножаются. Доказано, что между пероральным приемом и прорастанием B.coagulans в среднем проходит 4–6 часов [42, 52, 101]. Приблизительно 85 % пробиотика поступает в кишечник, где метаболически активная B.coagulans продуцирует левовращающую L(+) молочную кислоту [15, 75, 83].

Современные молекулярные технологии оценки персистенции, выживания и эффективности B.coagulans GBI-30, 6086 в кишечнике на фоне сложной смешанной микробиоты показали, что эффективность BC30 обусловлена спорообразующей природой штамма и последующим его прорастанием. Результаты были воспроизводимы с использованием фекальной флоры разных людей, и авторами было доказано, что благодаря спорообразующей способности пробиотик B.coagulans BC30 смог удержаться в сложной смеси кишечных бактерий. В данном эксперименте не было выявлено никаких отрицательных эффектов дополнения и/или вмешательства BC30 в нормальную микрофлору [48, 96, 120].

Casula and Cutting (2002), используя методы молекулярной биологии, доказали, что споры Bacillus spp. в значительном количестве прорастают в тощей и подвздошной кишке, что указывает на их колонизацию в тонком кишечнике [20, 75, 123]. Ghelardi et al. (2015) также подтвердили, что эффекты Bacillus spp. появляются после временной колонизации в кишечнике [22, 43, 98].

Возможность влияния аллохтонных штаммов Bacillus на профиль фекальной флоры хозяина подтверждена тем, что после 28-дневного лечения Bacillus coagulans у пожилых пациентов базовые популяции Faecalibacterium prausnitzii, Clostridium lituseburense и Bacillus spp. были значительно выше по сравнению с группой плацебо [88, 19, 125].

Hong et al. (2009) подтвердили информацию о том, что Bacillus адаптировались к жизни в человеческом желудочно-кишечном тракте (ЖКТ), включая способность образовывать биопленку, спорировать и анаэробно продуцировать противомикробные белки, и их следует рассматривать как киназные комменсалы, а не только как почвенные микроорганизмы [51].

Влияние пробиотических Bacillus coagulans на процессы пищеварения и обмен веществ

Влияние на процессы пищеварения пробиотических Bacillus coagulans GBI-30, 6086 (Ganeden BC30) представлены в модели in vitro желудка и тонкой кишки (TIM-1) в отсутствие и в присутствии BC30 [65, 86, 102]. Доказано, что продукты пищеварения, образующиеся при переваривании растительных белков в присутствии BC30, представляют собой более короткие пептиды и свободные аминокислоты. BC30 увеличивал переваривание белка и его поглощение в верхнем отделе ЖКТ, поэтому, как следствие участия в переваривании белка, BC30 априори уменьшал количество белка, которое могло быть доставлено в толстую кишку, с его трансформацией в токсичные метаболиты. Таким образом, особенности переваривания белка в присутствии BC30 показали двойное преимущество пробиотика — повышение биодоступности аминокислот из растительных белков в верхнем отделе ЖКТ и сохранение более здоровой среды в толстой кишке [65, 73, 90].

Другие аспекты участия Bacillus в обмене веществ подтверждены в эксперименте, проведенном группой ученых, которые доказали влияние Lactobacillus plantarum и Bacillus coagulans на профиль липидов сыворотки у крыс с гиперхолестеринемией. Показано, что уровни содержания триглицеридов, холестерина, липопротеидов низкой плотности, липопротеидов очень низкой плотности, АЛТ и АСТ в сыворотке и атерогенного индекса были значительно ниже в группах животных, которые получали пробиотическую коррекцию. Диета с высоким содержанием холестерина в течение 50 дней приводила к значительному увеличению массы тела крыс, однако введение L.plantarum и B.coagulans значительно уменьшало прирост массы тела. Подтверждено еще раз, что B.coagulans и L.plantarum могут выживать, проходя через верхний желудочно-кишечный тракт после перорального кормления крыс, и в последующем колонизироваться в их толстой кишке [11, 38, 59].

Пробиотик Bacillus coagulans: контроль нарушений микробиоценоза кишечника и протекция нормобиотной микрофлоры (в т.ч. иммунные механизмы)

Из основных механизмов действия B.coagulans следует отметить наличие доказательной базы в отношении протекции пробиотика по отношению к собственной микрофлоре кишечника [3, 112, 123]. Действие B.coagulans за счет улучшения желудочно-кишечной экологии реализуется путем увеличения популяции облигатных нормобиотных микроорганизмов [3, 78].

Исследование молекулярного механизма воздействия B.coagulans в эксперименте на кишечнике поросят подтвердило влияние пробиотика на уровень снижения содержания холестерина и гамма-глутамилтранспептидазы в плазме (p < 0,05); уменьшение скорости диареи и активности диаминоксидазы в плазме (p < 0,05), увеличение высоты ворсинок в подвздошной кишке и глубины крипты в тощей кишке (p < 0,05); повышение активности супероксиддисмутазы и каталазы, а также снижение содержания малонового альдегида и H2O3 в кишечнике (p < 0,05). Эти данные доказали, что добавление B.coagulans оказывает благоприятное воздействие на метаболизм питательных веществ, поддержание целостности кишечника, снижение окислительного стресса и диареи. Дальнейшее исследование молекулярных механизмов показало изменение уровней экспрессии родственных белков и генов, что предопределяет состав сообществ микробиоты кишечника [127, 131, 134].

В доступной для анализа литературе есть данные, что у человека штаммы Bacillus демонстрируют антимикробную, антиокислительную и иммуномодулирующую активность при приеме внутрь, что связано с их способностью продуцировать противомикробные пептиды, малые внеклеточные эффекторные молекулы и способностью взаимодействовать с хозяином с помощью адгезии и связывания [66, 86, 120].

Производство B.coagulans короткоцепочечных жирных кислот и таких пептидов, как коагулин, бактериоцинподобное вещество и лактоспорин, продемонстрировало значительную антибактериальную активность данного пробиотического штамма, что подтверждает наличие антагонистического действия пробиотика B.coagulans по отношению к патогенам, колонизируюшим слизистую ЖКТ у человека [78, 81, 57, 100].

Недавно из традиционной рыбы в Манипуре (Индия) был выделен штамм пробиотиков Bacillus coagulans, выделяющих неизвестный до этого бактериоцин с низкой молекулярной массой, который проявлял широкий спектр антимикробной активности против значимых патогенов [49, 71].

Кроме того, положительный эффект B.coagulans на метаболизм кишечника также оценивается Lee et al. (2016), которые сообщили, что прием B.coagulans крысами, которых кормили желчью, способствовал улучшению состояния кишечника и росту полезной микробиоты в кишечнике [73, 90].

Профилактическую роль пробиотиков Bacillus в условиях нарушения физиологии кишечника отметили Lopetuso et al., 2016 [77, 111]. Уменьшение дисбактериоза и воспаления кишечника при использовании пробиотических штаммов Bacillus было обнаружено благодаря их способности восстанавливать слизистую оболочку кишечника и нормализовать его биоценоз.

Исследование in vivo, проведенное Haldar and Gandhi (2016), показало, что пероральное введение обезжиренного молока, содержащего Bacillus coagulans, уменьшает количество колиформных бактерий в фекалиях исследуемых групп [76, 102].

Таким образом, механизмы, посредством которых пробиотик Bacillus coagulans может улучшить здоровье человека, включают стимуляцию иммунной системы, синтез противомикробных белков (бактериоцины — субтилин и коагулин), антибиотиков (Surfactin и Bacilysin), ферментов и модуляцию состава микробиоты кишечника. Механизм поддержания гомеостаза кишечника включает содействие росту других полезных микробов и подавление не только патогенных возбудителей, но и воспалительного ответа слизистой оболочки кишечника [33, 62].

Исследование механизма улучшения нормальной микробной флоры ЖКТ с участием спор B.coagulans на основании данных RT-PCR — молекулярного метода обнаружения прорастания спор в желудочно-кишечном тракте мышей подтвердило, что спора проявила иммуностимулирующий эффект, усиливая антимикробный эффект штамма B.coagulans. Исследования in vitro также показали, что компоненты клеточной стенки и супернатант некоторых штаммов B.coagulans влияют на воспаление кишечника посредством модуляции цитокинов, ингибирования активных форм кислорода и усиления фагоцитоза [20, 70, 68].

В культурах in vitro мононуклеарных клеток периферической крови человека (РВМС) у здоровых доноров крови в присутствии инактивированной В.coagulans GBI-30, 6086 в течение 24 часов продемонстрировано, что В.coagulans GBI-30, 6086 индуцировали ранний маркер активации CD69 на CD3+ CD56-T-лимфоцитах, CD3+ CD56+ NKT-клетках, CD3-CD56+ NK-клетках, а также некоторых клетках в CD-CD56-non-T non-NK. Культуральные супернатанты показали устойчивое увеличение выработки цитокинов IL-1β, IL-6, IL-17A и TNF-α. Уровни IFN-γ повышались параллельно с хемокинами (MCP-1, MIP-1α и MIP-1β), противовоспалительными цитокинами (IL-1ra и IL-10) и фактором роста G-CSF, связанного с биологией восстановления и стволовыми клетками [61, 88, 131].

В одном из последних обзоров, посвященных Bacillus coagulans как пробиотику, механизм действия бактерии рассматривается со следующих позиций:

— конкуренция за питательные вещества;

— секреция противомикробных веществ;

— снижение рН кишечника путем образования SCFA и блокирования адгезионных участков;

— блокирование сайтов рецепторов токсинов — иммунная стимуляция;

— подавление производства токсинов [26, 33, 39, 45, 65, 88].

Доказательная база безопасности Bacillus coagulans GBI-30, 6086

Интерес к возможностям использования Bacillus coagulans в медицине и клинической практике сегодня связан с последними достижениями молекулярных биотехнологий, а именно наличием расшифрованного генома этой бактерии, который с указанием генов и их локусов находится в открытом доступе на официальном сайте Национального центра биотехнологической информации, США (NCBI) [140–142].

Из отчета Управления безопасностью пищевых добавок Центра продовольственной безопасности и прикладного питания FDA, 2017 (Department of health & human services, Public Health Service; Food and Drug Administration, College Park, MD 20740-3835): опубликованные данные GRN 000399 исследования препарата B.coagulans GBI-30, 6086 в отношении острой, субхронической, хронической и репродуктивной токсичности, а также мутагенности и генотоксичности бактерии B.coagulans на основании современной доказательной информационной базы, включающей данные о секвенировании целых геномов и результаты биоинформационных анализов, демонстрируют, что штамм B.coagulans GBI-30, 6086 не кодирует какие-либо факторы вирулентности, не содержит генов, кодирующих образование токсических веществ и вредных факторов, нетоксичен (отсутствуют обнаруживаемые уровни биогенных аминов) и не содержит генов, участвующих в биосинтезе токсичных липопептидов, энтеротоксинов и гемолизинов. Это подтверждает, что B.coagulans GBI-30, 6086 является непатогенным и нетоксичным штаммом, а также не содержит гены антибиотикорезистентности и чувствителен ко многим клинически применяемым антибиотикам [140–142].

Результаты клинических исследований B.coagulans GBI-30 у взрослых, как и результаты четырех рандомизированных слепых плацебо-контролируемых клинических исследований с участием детей, которым с питанием вводили B.coagulans в дозе до 3,5 · 108 КОЕ/сут в течение одного года, подтверждают отсутствие побочных эффектов, связанных с применением препарата B.coagulans GBI-30, 6086 [140–142].

Все вышеизложенное подтверждает безопасность пробиотика B.coagulans GBI-30, 6086 в условиях его предполагаемого использования у человека, который имеет безопасный (GRAS) статус в соответствии с заключением Управления по контролю за продуктами и лекарствами США (FDA) [142].

Лактовит Форте (В.coagulans GBI-30, 6086 в сочетании с витаминами В9 и В12) — эффективность и безопасность в гастроэнтерологии

Оригинальность препарата Лактовит Форте состоит в уникальной комбинации штамма В.coagulans GBI-30, 6086, который имеет высокий уровень безопасности GRAS и генетический паспорт, с витаминами группы В (фолиевая кислота и цианокобаламин). Целесообразность комбинации В.coagulans и витаминов В9 и В12 в препарате Лактовит Форте заключается в сочетанных эффектах: витамины содействуют росту и размножению Bacillus coagulans и усиливают иммуномодулирующий эффект и восстановление слизистой оболочки кишечника. Важным аспектом биологического действия витаминов В9 и В12 является их влияние на иммунную систему и гемопоэз.

Витамин В12 повышает противоинфекционную резистентность организма за счет усиления бактерицидной и опсонизирующей активности сыворотки крови, увеличения продукции антител, усиления фагоцитарной активности лейкоцитов, стимулирования выработки интерферона.

Витамин В9 также влияет на иммунную систему. При дефиците этого витамина отмечено подавление CD8+- и NK-клеток (ассоциированное с уменьшением резистентности к инфекциям), а также доказано уменьшение выживания Т-регуляторных клеток, что приводит к повышению чувствительности кишечника к воспалительным процессам инфекционного и аутоиммунного характера.

Необходимо отметить, что в производстве оригинального пробиотика Лактовит Форте используется запатентованный штамм Bacillus coagulans GBI-30, 6086, информация о геноме которого находится на сайте www.ncbi.nlm.nih.gov/pmc/articles/PMC4223449/, а заключение FDA о безопасности данного штамма на www.fda.gov/grasnoticeinventory. Маркировка препарата B.coagulans GBI-30, 6086 соответствует микробному паспорту и заявленной дозе, что подтверждено молекулярными диагностическими процедурами [140].

Таким образом, В.coagulans GBI-30, 6086 в составе пробиотика Лактовит Форте полностью соответствует требованиям ВОЗ к пробиотикам:

— состоит из живых или жизнеспособных клеток;

— сохраняет стабильность состава и жизнеспособность флоры в течение всего срока хранения;

— не обладает цито- и эмбриотоксичностью;

— выживает в агрессивной среде;

— не угнетает родную микрофлору, увеличивает ее количество;

— антагонистически действует по отношению к патогенам;

— безопасен в применении — элиминируется через 7 дней после окончания лечения;

— стимулирует врожденный и приобретенный иммунитет.

Современные поисковые системы предлагают для анализа более 100 публикаций о препарате Лактовит Форте, что свидетельствует об интересе к данному виду пробиотиков и возможностях его использования в сегодняшней медицинской практике.

Преимущества препарата Лактовит Форте (согласно результатам клинических исследований и инструкции производителя):

— устойчив к действию высокой температуры, антибиотиков и кислой среды желудка. Споры бацилл активируются благодаря низкому рН желудка, затем попадают в двенадцатиперстную кишку, где размножаются и превращаются в живую вегетативную форму;

— препятствует росту патогенных бактерий. В тонкой кишке бациллы коагулянс быстро размножаются и вырабатывают молочную кислоту, перекись водорода, лизоцим и др.;

— способствует стимуляции роста собственной микрофлоры, в том числе при дисбиозе на фоне антибиотикотерапии;

— содержит фолиевую кислоту (витамин В9) и цианокобаламин (витамин В12), оказывающие синергичное действие и восстанавливающие слизистую оболочку кишечника (при дисбиозе, особенно лекарственном, возникает дефицит витаминов вследствие блокирования ферментных систем клетки антибиотиками, что приводит к нарушению эндогенного синтеза витаминов К и группы В, а также к нарушению всасывания витаминов);

— обладает репаративными и иммуномодулирующими свойствами, проявляющимися способностью повышать общий уровень секреторного IgA и титры специфических секреторных антител, усиливать фагоцитоз и др.;

— возможность применения в период беременности и кормления грудью, у детей с первых месяцев жизни [136–139].

Таким образом, систематический обзор пробиотика В.coagulans GBI-30, 6086 и препарата Лактовит Форте, представленный в этой публикации, а также метаанализы, касающиеся информации об использовании пробиотиков у человека, подтверждают наличие доказательной базы по факту того, что эталонные пробиотические штаммы играют потенциальную роль в управлении несколькими клиническими сценариями: диареей, болью, воспалительными заболеваниями кишечника, функциональными нарушениями ЖКТ, нарушениями микробиоценоза, раком и др.

Возможности пробиотической терапии сегодняшнего дня связаны с тем, что видовой состав микробиоты кишечника и его надлежащий баланс являются важнейшими критериями, которые определяют здоровье, а проверенные стратегии, нацеленные на восстановление биоценоза кишечника, могут помочь восстановить нормальный здоровый фенотип у человека. Эта парадигма созвучна со словами великого ученого прошлого столетия, основоположника учения о микробиоме, выдающегося микробиолога И.И. Мечникова, который еще в 1907 году в своей работе «Этюды оптимизма» сказал: «Духовное и физическое здоровье человека в значительной мере определяется многочисленными ассоциациями микробных организмов, населяющих его кишечник» [135].

Конфликт интересов. Не заявлен.


Список литературы

1. Abdhul K., Ganesh M., Shanmughapriya S., Vanithamani S., Kanagavel M., Anbarasu K. et al. Bacteriocinogenic potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari // Int. J. Biol. Macromol. 2015; 79: 800-806. 10.1016/j.ijbiomac.2015.06.005

2. Abhari K., Shekarforoush S.S., Hosseinzadeh S., Nazifi S., Sajedianfard J., Eskandari M.H. The effects of orally administered Bacillus coagulans and inulin on prevention and progression of rheumatoid arthritis in rats // Food Nutr. Res. 2016; 60: 30876 10.3402/fnr.v60.30876

3. Adami A., Cavazzoni V. Occurrence of selected bacterial groups in the faeces of piglets fed with Bacillus coagulans as probiotic // J. Basic Microbiol. 1999; 39: 3-10. 10.1002/(SICI)1521-4028(199903)39:1<3:AID-JOBM3>3.0.CO;2-O

4. Adewumi G.A., Oguntoyinbo F.A., Romi W., Singh T.A., Jeyaram K. Genome subtyping of autochthonous Bacillus species isolated from Iru, a fermented Parkia biglobosa seed // Food Biotechnol. 2014; 28: 250-268. 10.1080/08905436.2014.931866

5. Ash et al. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences // Lett. Appl. Microbiol. 1991; 13: 202-206.

6. Alou et al. Bacillus rubiinfantis sp. nov. strain mt2T, a new bacterial species isolated from human gut // New Microbes New Infect. 2015; 8: 51-60.

7. Alkaya B., Laleman I., Keceli S., Ozcelik O., Cenk Haytac M., Teughels W. Clinical effects of probiotics containing Bacillus species on gingivitis: a pilot randomized controlled trial // J. Periodontal. Res. 2016; 52: 497-504. 10.1111/jre.12415

8. Alou M.T., Rathored J., Khelaifia S., Michelle C., Brah S., Diallo B.A. et al. Bacillus rubiinfantis sp. nov. strain mt2T, a new bacterial species isolated from human gut // New Microbes New Infect. 2015; 8: 51-60. 10.1016/j.nmni.2015.09.008

9. Altmeyer S., Kröger S., Vahjen W., Zentek J., Scharek-Tedin L. Impact of a probiotic Bacillus cereus strain on the jejunal epithelial barrier and on the NKG2D expressing immune cells during the weaning phase of piglets // Vet. Immunol. Immunopathol. 2014; 161: 57-65. 10.1016/j.vetimm.2014.07.001

10. Angmo K., Kumari A., Bhalla T.C. Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh // LWT Food Sci. Technol. 2016; 66: 428-435. 10.1016/j.lwt.2015.10.057

11. Aminlari L., Shekarforoush S.S., Hosseinzadeh S., Nazifi S., Sajedianfard J., Eskandari M.H. Effect of Probiotics Bacillus coagulans and Lactobacillus plantarum on Lipid Profile and Feces Bacteria of Rats Fed Cholesterol-Enriched Diet // Probiotics Antimicrob. Proteins. 2018 Oct 27.

12. Ash C., Farrow J.A.E., Wallbanks S., Collins M.D. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences // Lett. Appl. Microbiol. 1991; 13: 202-206. 10.1111/j.1472-765X

13. Bader J., Albin A., Stahl U. Spore-forming bacteria and their utilisation as probiotics // Benef. Microbes. 2012; 3: 67-75. 10.3920/BM2011.0039

14. Beaumont M. Flavouring composition prepared by fermentation with Bacillus spp. // Int. J. Food Microbiol. 2002; 75: 189-196. 10.1016/S0168-1605(01)00706-1

15. Bergey D. Bergey’s Manual of Determinative Bacteriology. 9th ed. — Baltimore, MD: The Williams and Wilkens Company, 1993.

16. Berthold-Pluta A., Pluta A., Garbowska M. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract // Microb. Pathog. 2015; 82: 7-14. 10.1016/j.micpath.2015.03.015

17. Bohm M.E., Huptas C., Krey V.M., Scherer S. Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereusenterotoxin operons hbl, cytK and nhe // BMC Evol. Biol. 2015; 15: 246 10.1186/s12862-015-0529-4

18. Butel M.J. Probiotics, gut microbiota and health // Med. Mal. Infect. 2014; 44: 1-8. 10.1016/j.medmal.2013.10.002

19. Cai D., Liu M., Wei X., Li X., Wang Q., Nomura C.T., et al. Use of Bacillus amyloliquefaciens HZ-12 for high-level production of the blood glucose lowering compound, 1-deoxynojirimycin (DNJ), and nutraceutical enriched soybeans via fermentation // Appl. Biochem. Biotechnol. 2017; 181: 1108-1122. 10.1007/s12010-016-2272-8

20. Casula G., Cutting S. M. Bacillus probiotics: spore germination in the gastrointestinal tract // Appl. Environ. Microbiol. 2002; 68: 2344-2352. 10.1128/AEM.68.5.2344-2352.2002

21. Chantawannakul P., Oncharoen A., Klanbut K., Chukeatirote E., Lumyong S. Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in northern // Thailand. Sci. Asia. 2002; 28: 241-245. 10.2306/scienceasia1513-1874.2002.28.241

22. Ghelardi E., Celandroni F., Salvetti S., Gueye S.A., Lupetti A., Senesi S. Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore-based probiotic formulation // J. Appl. Microbiol. 2015; 119(2): 552-9.

23. Choi J.H., Pichiah P.B.T., Kim M.J., Cha Y.S. Cheonggukjang, a soybean paste fermented with B. licheniformis 67 prevents weight gain and improves glycemic control in high fat diet induced obese mice // J. Clin. Biochem. Nutr. 2016; 59: 31-38. 10.3164/jcbn.15-30

24. Cutting S.M. Bacillus probiotics // Food Microbiol. 2011; 28: 214-220. 10.1016/j.fm.2010.03.007

25. De Vecchi E. Lactobacillus sporogenes or Bacillus coagulans: misidentification or mislabelling? [Text] / E. De Vecchi, L. Drago // International Journal of Probiotics and Prebiotics. 2006; Vol. 1, № 1: P. 3-10.

26. Devid Kelle, Sean Farme, Anne McCartney and Glenn Gibson, Ganeden Biotech, Mayfield Heights, Bacillus coagulans as a probiotic. — Ohio, USA, Food Microbial Sciences Unit, Department of Food and Nutritional Sciences, University of Reading, Reading.

27. Di Caro S., Tao H., Grillo A., Franceschi F., Elia C., Zocco M.A. et al. Bacillus clausiieffect on gene expression pattern in small bowel mucosa using DNA microarray analysis // Eur. J. Gastroenterol. Hepatol. 2005; 17: 951-960. 10.1097/00042737-200509000-00011

28. Doron S., Snydman D.R. Risk and safety of probiotics // Clin. Infect. Dis. 2015; 60: S129-S134. 10.1093/cid/civ085

29. Drago L., Rodighiero V., Celeste T., Rovetto L., De Vecchi E. Microbiological evaluation of commercial probiotic products available in the United States in 2009 // J. Chemother. 2013; 22: 373-377. 10.1179/joc.2010.22.6.373

30. Duc L.H., Hong H.A., Barbosa T.M., Henriques A.O., Cutting S.M. Characterization of Bacillus probiotics available for human use // Appl. Environ. Microbiol. 2004; 70: 2161-2171. 10.1128/AEM.70.4.2161-2171.2004

31. Dudonné S., Varin T.V., Anhê F.F., Dubé P., Roy D., Pilon G. et al. Modulatory effects of a cranberry extract co-supplementation with Bacillus subtilis CU1 probiotic on phenolic compounds bioavailability and gut microbiota composition in high-fat diet-fed mice // Pharma Nutr. 2015; 3: 89-100. 10.1016/j.phanu.2015.04.002

32. Earl A.M., Eppinger M., Fricke W.F., Rosovitz M.J., Rasko D.A., Daugherty S. et al. Whole-genome sequences of Bacillus subtilis and close relatives // J. Bacteriol. 2012; 194: 2378-2379. 10.1128/JB.05675-11

33. Elshaghabee F.M.F., Rokana N., Gulhane R.D., Sharma C., Panwar H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives // Front Microbiol. 2017 Aug 10; 8: 1490.

34. Endres J.R., Clewell A., Jade K.A., Farber T., Hauswirth J., Schauss A.G. Safety assessment of a proprietary preparation of a novel probiotic, Bacillus coagulans, as a food ingredient // Food Chem. Toxicol. 2009; 47: 1231-1238. 10.1016/j.fct.2009.02.018

35. Fakhry S., Sorrentini I., Ricaa E., De Felice M., Baccigalupi L. Characterization of spore forming Bacilli isolated from the human gastrointestinal tract // J. Appl. Microbiol. 2008; 105: 2178-2186. 10.1111/j.1365-2672.2008.03934.x

36. Fan B., Blom J., Klenk H.P., Borriss R. Bacillus amyloliquefaciens, Bacillus velezensis and Bacillus siamensis form an operational group B. amyloliquefaciens within the B. subtilis species complex // Front. Microbiol. 2017; 8: 22 10.3389/fmicb.2017.00022

37. FAO/WHO. Health and Nutritional Properties of Probiotics in Food Including Powder Milk With Live Lactic Acid Bacteria. Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria — Rome: Food and Agriculture Organization, 2001.

38. FAO/WHO. Guidelines for the Evaluation of Probiotics in Food. Food and Agriculture Organization of the United Nations and World Health Organization Working Group Report. — Rome: Food and Agriculture Organization, 2002.

39. Fouad M.F. Elshaghabee, Namita Rokana, Rohini D. Gulhane, Chetan Sharma and Harsh Panwar. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives // Front Microbiol. 2017; 8: 1490.

40. Fujiya M., Musch M. W., Nakagawa Y., Hu S., Alverdy J., Kohgo Y. et al. The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter // Cell Host. Microbe. 2007; 1: 299-308. 10.1016/j.chom.2007.05.004

41. Ghani M., Ansari A., Aman A., Zohra R.R., Siddiqui N.N., Qader S.A.U. Isolation and characterization of different strains of Bacillus licheniformis for the production of commercially significant enzymes // Pak. J. Pharm. Sci. 2013; 26: 691-697.

42. Ghandi A.B. Lactobacillus sporogenes, an advancement in Lactobacillus therapy // East. Pharm. 1988; 41-43.

43. Ghelardi E., Celandroni F., Salvetti S., Gueye S.A., Lupetti A., Senesi S. Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore-based probiotic formulation // J. Appl. Microbiol. 2015; 119: 552-559. 10.1111/jam.12848

44. Ghoneim M.A.M., Hassan A.I., Mahmoud M.G., Asker M.S. Effect of polysaccharide from Bacillus subtilis sp. on cardiovascular diseases and atherogenic indices in diabetic rats // BMC Complement. Altern. Med. 2016; 16:112 10.1186/s12906-016-1093-1

45. Gobi N., Malaikozhundan B., Sekar V., Shanthi S., Vaseeharan B., Jayakumar R. et al. GFP tagged Vibrio parahaemolyticus Dahv2 infection and the protective effects of the probiotic Bacillus licheniformis Dahb1 on the growth, immune and antioxidant responses in Pangasius hypophthalmus // Fish Shellfish Immunol. 2016; 52: 230-238. 10.1016/j.fsi.2016.03.006

46. Green D.H., Wakeley P.R., Page A., Barnes A., Baccigalupi L., Ricca E. et al. Characterization of two bacillus probiotics // Appl. Environ. Microbiol. 1999; 65: 4288-4291.

47. Guo Z., Liu X.M., Zhang Q.X., Shen Z., Tian F.W., Zhang H. et al. Influence of consumption of probiotics on the plasma lipid profile: a meta-analysis of randomized controlled trials // Nutr. Metab. Cardiovasc. Dis. 2013; 21: 844-850. 10.1016/j.numecd.2011.04.008

48. Harue Honda, Lesley Hoyles, Glenn R. Gibson, Sean Farmer, David Keller and Anne L. McCartney // Impact of Ganeden BC30 (Bacillus coagulans GBI-30, 6086) on population dynamics of the human gut microbiota in a continuous culture fermentation system // International Journal of Probiotics and Prebiotics. 2011; 6(1): 65-72.

49. Ganesh M., Shanmughapriya S., Vanithamani S., Kanagavel M., Anbarasu K., Natarajaseenivasan K. Bacteriocinogenic potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari/Abdhul K. // International Journal of Biological Macromolecules. 2015.

50. Hoffman T., Troup P., Szabo A., Hungerer C., Jahn D. The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system // FEMS Microbiol. Lett. 1995; 131: 219-225. 10.1111/j.1574-6968.1995.tb07780.x

51. Hong H.A., Duc le H., Cutting S.M. The use of bacterial spore formers as probiotics // FEMS Microbiol. Rev. 2005; 29: 813-835. 10.1016/j.femsre.2004.12.001

52. Hong H.A., Huang J.M., Khaneja R., Hiep L.V., Urdaci M.C., Cutting S.M. The safety of Bacillus subtilis and Bacillus indicus as food probiotics // J. Appl. Microbiol. 2008; 105: 510-520. 10.1111/j.1365-2672.2008.03773.x

53. Hong H.A., Khaneja R., Tam N.M.K., Cazzato A., Tan S., Urdaci M. et al. Bacillus subtilis isolated from the human gastrointestinal tract // Res. Microbiol. 2009; 160: 134-143. 10.1016/j.resmic.2008.11.002

54. Horosheva T.V., Vodyanoy V., Sorokulova I. Efficacy of Bacillus probiotics in prevention of antibiotic-associated diarrhoea: a randomized, double-blind, placebo-controlled clinical trial // JMM Case Rep. 2014; 1: 1-6. 10.1099/jmmcr.0.004036

55. Hosoi T., Kiuchi K. Natto — a food made by fermenting cooked soybeans with Bacillus subtilis (natto) // Handbook of Fermented Functional Foods / Ed. by Farnworth E.R. (Boca Raton, FL: CRC Press). 2003; 227-245.

56. Hoyles L., Honda H., Logan N.A., Halket G., La Ragione R.M., McCartney A.L. Recognition of greater diversity of Bacillus species and related bacteria in human faeces. Res. Microbiol. 2012; 163: 3-13. 10.1016/j.resmic.2011.10.004

57. Hyronimus B., Le Marrec C., Sassi A.H., Deschamps A. Acid and bile tolerance of spore-forming lactic acid bacteria // Int. J. Food Microbiol. 2000; 61: 193-197. 10.1016/S0168-1605(00)00366-4

58. Hyronimus B., Le Marrec C., Urdaci M.C. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4 // J. Appl. Microbiol. 1998; 85: 42-50.

59. Jager R., Shields K.A., Lowery R.P., De Souza E.O., Partl J.M., Hollmer C. et al. Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery // Peer J. 2016; 4: e2276 10.7717/peerj.2276

60. Jeong H., Park S.H., Choi S.K. Draft genome sequences of four plant probiotic Bacillusstrains // Genome Announc. 2016; 4: e00358-16. 10.1128/genomeA.00358-16

61. Jensen G.S., Cash H.A., Farmer S., Keller D. Inactivated probiotic Bacillus coagulansGBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro // Journal of inflammation research. 2017; 10: 107-117.

62. Joseph B., Dhas B., Hena V., Raj J. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens // Asian Pac. J. Trop. Biomed. 2013; 3: 942-946. 10.1016/S2221-1691(13)60183-5

63. Kalliomäki M., Salminen S., Arvilommi H., Kero P., Koskinen P., Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial // Lancet. 2001; 357: 1076-1079. 10.1016/S0140-6736(00)04259-8

64. Karu R., Sumeri I. Survival of Lactobacillus rhamnosus GG during simulated gastrointestinal conditions depending on food matrix // J. Food Res. 2016; 5: 57-66. 10.5539/jfr.v5n5p56

65. Keller D., Van Dinter R., Cash H., Farmer S., Venema K. Bacillus coagulans GBI-30, 6086 increases plant protein digestion in a dynamic, computer-controlled in vitro model of the small intestine // Beneficial microbes. 2017; 8: 491-496.

66. Khochamit N., Siripornadulsil S., Sukon P., Siripornadulsil W. Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: potential as a probiotic strain // Microbiol. Res. 2015; 170: 36-50. 10.1016/j.micres.2014.09.004

67. Khodadad A., Farahmand F., Najafi M., Shoaran M. Probiotics for the treatment of pediatric Helicobacter pylori infection: a randomized double blind clinical trial // Iran. J. Pediatr. 2013; 23: 79-84.

68. Kotb E. Purification and partial characterization of serine fibrinolytic enzyme from Bacillus megaterium KSK-07 isolated from kishk, a traditional Egyptian fermented food // Appl. Biochem. Microbiol. 2015; 51: 34-43.

69. Kniehl E., Becker A., Forster D. H. Pseudo-outbreak of toxigenic Bacillus cereus isolated from stools of three patients with diarrhoea after oral administration of a probiotic medication // J. Hosp. Infect. 2003; 55: 33-38. 10.1016/S0195-6701(03)00133-6

70. Kodali V.P., Sen R. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium // Biotechnol J. 2008; 3: 245-251.

71. Kolsto A.B., Tourasse N.J., Okstad O.A. What sets Bacillus anthracis apart from other Bacillus species // Annu. Rev. Microbiol. 2009; 63: 451-476. 10.1146/annurev.micro.091208.073255

72. Krawczyk A.O., de Jong A., Holsappel S., Eijlander R.T., van Heel A., Berendsen E.M. et al. Genome sequences of 12 spore-forming Bacillus species, comprising Bacillus coagulans, Bacillus licheniformis, Bacillus amyloliquefaciens, Bacillus sporothermodurans, and Bacillus vallismortis, isolated from foods // Genome Announc. 2016; 4: 103-116. 10.1128/genomeA.00103-16

73. Lee J.H., Nam S.H., Seo W.T., Yun H.D., Hong S.Y., Kim M.K. et al. The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells // Food Chem. 2012; 131: 1347-1354. 10.1016/j.foodchem.2011.09.133

74. Lefevre M., Racedo S.M., Ripert G., Housez B., Cazaubiel M., Maudet C.P. et al. Probiotic strain Bacillus subtilis CU1 stimulates immune system of elderly during common infectious disease period: a randomized, double-blind placebo-controlled study // Immun. Ageing. 2015; 12: 24 10.1186/s12979-015-0051-y

75. London L.E., Kumar A.H., Wall R., Casey P.G., O’Sullivan O., Shanahan F. et al. Exopolysaccharide-producing probiotic Lactobacilli reduce serum cholesterol and modify enteric microbiota in ApoE-deficient mice // J. Nutr. 2014; 144: 1956-1962. 10.3945/jn.114.191627

76. Haldar L., Gandhi D.N. Effect of oral administration of Bacillus coagulans B37 and Bacillus pumilus B9 strains on fecal coliforms, Lactobacillus and Bacillus spp. in rat animal model // Vet. World. 2016; 9(7): 766-772.

77. Lopetuso L.R., Scaldaferri F., Franceschi F., Gasbarrini A. Bacillus clausii and gut homeostasis: state of the art and future perspectives // Expert. Rev. Gastroenterol. Hepatol. 2016; 10: 943-948. 10.1080/17474124

78. Majeed M., Prakash L. Lactospore: The Effective Probiotic. Piscataway, NJ: Nutri Science Publishers, Inc.; 1998.

79. Mallappa R.H., Rokana N., Duary R.K., Panwar H., Batish V.K., Grover S. Management of metabolic syndrome through probiotic and prebiotic interventions // Indian J. Endocrinol. Metab. 2012; 1620-27. 10.4103/2230-8210.91178

80. Maneerat S., Lehtinen M.J., Childs C.E., Forssten S.D., Alhoniemi E., Tiphaine M. et al. Consumption of Bifidobacterium lactis Bi-07 by healthy elderly adults enhances phagocytic activity of monocytes and granulocytes // J. Nutr. Sci. 2014; 44: 1-10. 10.1017/jns.2013.31

81. Mandel D.R., Eichas K., Holmes J. Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial // BMC Complement Altern. Med. 2010; 10: 1.

82. Manhar A.K., Bashir Y., Saikia D., Nath D., Gupta K., Konwar B.K. et al. Cellulolytic potential of probiotic Bacillus Subtilis AMS6 isolated from traditional fermented soybean (Churpi): An in-vitro study with regards to application as an animal feed additive // Microbiol. Res. 2016; 186: 62-70. 10.1016/j.micres.2016.03.004

83. Mohammed Y., Lee B., Kang Z., Du G. Development of a two-step cultivation strategy for the production of vitamin B12 by Bacillus megaterium // Microb. Cell Fact. 2014; 13: 102 10.1186/s12934-014-0102-7

84. Mullany P., Barbosa T.M., Scott K., Roberts A.P. (2004). Mechanisms of gene transfer and the spread of antibiotic resistance in spore forming organisms in the GI tract, in Bacterial Spore Formers: Probiotics and Emerging Applications / Ricca E., Henriques A.O., Cutting S.M., editors. — Norfolk: Horizon Bioscience, 2004. — Р.  113-129.

85. Muscettola M., Grasso G., Blach-Olszewska Z., Migliaccio P., Borghesi-Nicoletti C., Giarratan M. et al. Effects of Bacillus subtilis spores on interferon production // Pharmacol. Res. 1992; 26: 176-177. 10.1016/1043-6618(92)90652-R

86. Muscettola M., Grasso G., Migliaccio P., Gallo V.C. Plasma interferon-like activity in rabbits after oral administration of Bacillus subtilis spores // J. Chemother. 1991; 3: 130-132.

87. Nagal S., Okimura K., Kaizawa N., Ohki K., Kanatomo S. Study on surfactin, a cyclic depsipeptide II synthesis of surfactin B2 produced by Bacillus natto KMD 2311 // Chem. Phar. Bull. (Tokyo). 1996; 44: 5-10. 10.1248/cpb.44.5

88. Nyangale E.P., Farmer S., Cash K., Chernoff D., Gibson G.R. Bacillus coagulans GBI-30 6086 modulates Faecalibacterium prausnitziiin older men and women // J. Nutr. 2015; 145: 1446-1452. 10.3945/jn.114.199802

89. Nyangale E.P., Farmer S., Keller D., Chernoff D., Gibson G.R. Effect of prebiotics on the fecal microbiota of elderly volunteers after dietary supplementation of Bacillus coagulans GBI-30, 6086 // Anaerobe. 2014; 30: 75-81. 10.1016/j.anaerobe.2014.09.002

90. Ouattara H.G., Reverchon S., Niamke S.L., Nasser W. Regulation of the synthesis of pulp degrading enzymes in Bacillus isolated from cocoa fermentation // Food Microbiol. 2017; 63: 255-262. 10.1016/j.fm.2016.12.004

91. Panwar H., Calderwood D., Grant I.R., Grover S., Green B.D. Lactobacillus strains isolated from infant faeces possess potent inhibitory activity against intestinal alpha-and beta-glucosidases suggesting anti-diabetic potential // Eur. J. Nutr. 2014; 53: 1465-1474. 10.1007/s00394-013-0649-9

92. Panwar H., Calderwood D., Grant I.R., Grover S., Green B.D. Lactobacilli possess inhibitory activity against dipeptidyl peptidase-4 (DPP-4) // Ann. Microbiol. 2016; 66; 505-509. 10.1007/s13213-015-1129-7

93. Pinchuk I.V., Bressollier P., Verneuil B., Fenet B., Sorokulova I.B., Megraud F. et al. In vitro Anti-Helicobacter pylori Activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics // Antimicrob. Agents Chemother. 2001; 45: 3156-3161. 10.1128/AAC.45.11.3156-3161.2001

94. Prokesova L., Novakova M., Julak J., Mara M. Effect of Bacillus firmus and other sporulating aerobic microorganisms on in vitro stimulation of human lymphocytes. A comparative study // Folia Microbiol. 1994; 39: 501-504. 10.1007/BF02814071

95. Ramarao N., Lereclus D. Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively // Microbes Infect. 2006; 8: 1483-1491. 10.1016/j.micinf.2006.01.005

96. Ranji P., Akbarzadeh A., Rahmati-Yamchi M. Associations of probiotics with vitamin D and leptin receptors and their effects on colon cancer // Asian Pac. J. Cancer Prev. 2015; 16: 3621-3627. 10.7314/APJCP.2015

97. Rao K.P., Chennappa G., Suraj U., Nagaraja H., Raj A.C., Sreenivasa M.Y. Probiotic potential of Lactobacillus strains isolated from sorghum-based traditional fermented food // Probiotics Antimicrob. Proteins. 2015; 7: 146-156. 10.1007/s12602-015-9186-6

98. Redman M.G., Ward E.J., Phillips R.S. The efficacy and safety of probiotics in people with cancer: a systematic review // Ann. Oncol. 2014; 25: 1919-1929. 10.1093/annonc/mdu106

99. Rey M.W., Ramaiya P., Nelson B.A., Brody-Karpin S.D., Zaretsky E.J., Tang M. et al. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species // Genome Biol. 2004; 5: 77. 10.1186/gb-2004-5-10-r77

100. Riazi S., Wirawan R.E., Badmaev V., Chikindas M.L. Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050 // J. Appl. Microbiol. 2009; 106: 1370-1377.

101. Ripert G., Racedo S.M., Elie A.M., Jacquot C., Bressollier P., Urdaci M.C. Secreted compounds of the probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins // Antimicrob. Agents Chemother. 2016; 60: 3445-3454. 10.1128/AAC.02815-15

102. Rowan N.J., Deans K., Anderson J.G., Gemmell C.G., Hunter I.S., Chaithong T. Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae // Appl. Environ. Microbiol. 2001; 67: 3873-3881. 10.1128/AEM.67.9.3873-3881.2001

103. Sanchez B., Arias S., Chaignepain S., Denayrolles M., Schmitter J.M., Bressollier P. et al. Identification of surface proteins involved in the adhesion of a probiotic Bacillus cereus strain to mucin and fibronectin // Microbiology. 2009; 155. 1708-1716. 10.1099/mic.0.025288-0

104. SCAN (1999). Opinion of of the Scientific Steering Committee on Antimicrobial Resistance. European Commission, Health and Consumer Protection Directorate-General. (SCAN) Scientific Committee on Animal Nutrition. Available at: https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_ssc_out50_en.pdf

105. SCAN (2002). Opinion of the Scientific Committee on Animal Nutrition (SCAN) on the use of Bacillus licheniformis NCTC 13123 in Feeding Stuffs for Pigs (product AlCare). European Commission, Health and Consumer Protection Directorate-General. (SCAN) Scientific Committee on Animal Nutrition. Available at: https://ec.europa.eu/food/sites/food/files/safety/docs/animal-feed_additives_rules_scan-old_report_out79.pdf

106. SCAN (2003). Opinion of the Scientific Committee on Animal Nutrition, on the Criteria for Assessing the Safety of Microorganisms Resistant to Antibiotics of Human Clinical and Veterinary Importance. European Commission, Health and Consumer Protection Directorate-General. (SCAN) Scientific Committee on Animal Nutrition. Available at: https://www.efsa.europa.eu/en/efsajournal/pub/223

107. Scott K.P., Antoine J.M., Midtvedt T., van Hemert S. Manipulating the gut microbiota to maintain health and treat disease // Microb. Ecol. Health Dis. 2015; 26: 25877 10.3402/mehd.v26.25877

108. Shida K., Nomoto K. Probiotics as efficient immuno potentiators: translational role in cancer prevention // Indian J. Med. Res. 2013; 138: 808-814.

109. Shimizu K., Ogura H., Asahara T., Nomoto K., Morotomi M., Tasaki O. et al. Probiotic/synbiotic therapy for treating critically ill patients from a gut microbiota perspective // Dig. Dis. Sci. 2013; 58: 23-32. 10.1007/s10620-012-2334

110. Shobharani P., Padmaja R.J., Halami P.M. Diversity in the antibacterial potential of probiotic cultures Bacillus licheniformis MCC2514 and Bacillus licheniformis MCC2512 // Res. Microbiol. 2015; 166: 546-554. 10.1016/j.resmic.2015.06.003

111. Sorokulova I.B., Pinchuk I.V., Denayrolles M., Osipova I.G., Huang J.M., Cutting S. et al. The safety of two Bacillus probiotic strains for human use // Dig. Dis. Sci. 2008; 53: 954-963. 10.1007/s10620-007-9959-1

112. Smirnov V.V., Reznik S.R., V’iunitskaia V.A. et al. The effect of the complex probiotic Sporolact on the intestinal microbiocenosis of warm-blooded animals // Mikrobiol. Z. 1995; 57: 42-49.

113. Sudha R.M., Bhonagiri S. Efficacy of Bacillus coagulans strain Unique IS-2 in the treatment of patients with acute diarrhea // Int. J. Probiotics Prebiotics. 2012; 7: 33-37.

114. Takano H. The regulatory mechanism underlying light-inducible production of carotenoids in non phototrophic bacteria // Biosci. Biotechnol. Biochem. 2016; 80: 1264-1273. 10.1080/09168451.2016.1156478

115. Tam N.K., Uyen N.Q., Hong H.A., Duc L.H., Hoa T.T., Serra C.R. et al. The intestinal life cycle of Bacillus subtilis and close relatives // J. Bacteriol. 2006; 188: 2692-2700. 10.1128/JB.188.7.2692-2700.2006

116. Tamang J.P., Watanabe K., Holzapfel W.H. Review: diversity of microorganisms in global fermented foods and beverages // Front. Microbiol. 2016; 7: 377 10.3389/fmicb.2016.00377

117. Tanaka K., Takanaka S., Yoshida K.I. A second-generation Bacillus cell factory for rare inositol production // Bioengineered. 2014; 5: 331-334. 10.4161/bioe.29897

118. Terlabie N.N., Sakyi-Dawson E., Amoa-Awua W.K. The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa // Int. J. Food Microbiol. 2006; 106: 145-152. 10.1016/j.ijfoodmicro.2005.05.021

119. Tewari V.V., Dubey S.K., Gupta G. Bacillus clausii for prevention of late-onset sepsis in preterm infants: a randomized controlled trial // J. Trop. Pediatr. 2015; 61: 377-385. 10.1093/tropej/fmv050.

120. Thakur N., Rokana N., Panwar H. Probiotics: selection criteria, safety and role in health and disease // J. Innov. Biol. 2016; 3: 259-270.

121. Trocino A., Xiccato G., Carraro L., Jimenez G. Effect of diet supplementation with Toyocerin® (Bacillus cereus var. toyoi) on performance and health of growing rabbits // World Rabbit Sci. 2005; 13: 17-28.

122. Urgesi R., Casale C., Pistelli R., Rapaccini G.L., De Vitis I. A randomized double-blind placebo-controlled clinical trial on efficacy and safety of association of simethicone and Bacillus coagulans (Colinox®) in patients with irritable bowel syndrome // Eur. Rev. Med. Pharmacol. Sci. 2014; 18: 1344-1353.

123. Voichishina L.G., Chaplinskii V., V’iunitskaia V.A. The use of sporulating bacteria in treating patients with dysbacteriosis // Vrach. Delo. 1991; 12: 73-75.

124. Von Mollendorff J.W., Vaz-Velho M., Todorov S.D. Boza, a traditional cereal-based fermented beverage: a rich source of probiotics and bacteriocin-producing lactic acid bacteria // Functional Properties of Traditional Foods / Ed. by Kristbergsson K., Ötles S. — Boston, MA: Springer, 2016. — Р. 157-188.

125. Wang J., Tang H., Zhang C., Zhao Y., Derrien M., Rocher E. et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice // ISME J. 2015; 9: 1-15. 10.1038/ismej.2014.99

126. Weese J.S., Martin H. Assessment of commercial probiotic bacterial contents and label accuracy // Can. Vet. J. 2011; 52: 43.

127. Wu T., Zhang Y., Lv Y., Li P., Yi D., Wang L., Zhao D., Chen H., Gong J., Hou Y. Beneficial Impact and Molecular Mechanism of Bacillus coagulans on Piglets' Intestine // Int. J. Mol. Sci. 2018; 19 (7).

128. Xu D., Cote J.C. Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3 end 16S rDNA and 5 end 16S-23S ITS nucleotide sequences // Int. J. Syst. Evol. Microbiol. 2003; 53: 695-704. 10.1099/ijs.0.02346-0

129. Yang H.J., Kwon D.Y., Kim H.J., Kim M.J., Jung D.Y., Kang H.J. et al. Fermenting soybeans with Bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostaisis in diabetic rats with experimental Alzheimer’s type dementia // Eur. J. Nutr. 2014; 5477-88. 10.1007/s00394-014-0687-y

130. Yang O.O., Kelesidis T., Cordova R., Khanlou H. Immunomodulation of antiretroviral drug-suppressed chronic HIV-1 infection in an oral probiotic double-blind placebo-controlled trial // AIDS Res. Hum. Retroviruses. 2014; 30: 988-995. 10.1089/aid.2014.0181

131. Zhang H.L., Li W.S., Xu D.N., Zheng W.W., Liu Y., Chen J. et al. Mucosa-reparing and microbiota-balancing therapeutic effect of Bacillus subtilis alleviates dextrate sulfate sodium-induced ulcerative colitis in mice // Exp. Ther. Med. 2016; 12: 2554-2562. 10.3892/etm.2016.3686

132. Zhao C., Lv X., Fu J., He C., Hua H., Yan Z. In vitro inhibitory activity of probiotic products against oral Candida species // J. Appl. Microbiol. 2016; 121: 254-262. 10.1111/jam.13138

133. Zheng L.P., Zou T., Ma Y.J., Wang J.W., Zhang Y.Q. Antioxidant and DNA damage arotecting Activity of exopolysaccharides from the endophytic bacterium Bacillus Cereus SZ1 // Molecules. 2016; 21: 174 10.3390/molecules21020174

134. Zouari R., Abdallah-Kolsi R.B., Hamden K., Feki A.E., Chaabouni K., Makni-Ayadi F. et al. Assessment of the antidiabetic and antilipidemic properties of Bacillus subtilis SPB1 biosurfactant in alloxan-induced diabetic rats // Pept. Sci. 2015; 104: 764-774. 10.1002/bip.22705

135. Мечников И.И. Этюды оптимизма. — Новосибирск: Наука, 1988. — 244 с.

136. Харченко Н.В. Вивчення ефективності препарату Лактовіт Форте при хронічних хворобах шлунково-кишкового тракту із синдромом дисбактеріозу кишечника // Сучасна гастроентерологія. — 2007. — № 3(35). — С. 53-56.

137. Квашнина Л., Радионов В., Матвиенко И.Н. Возможности коррекции дефицита железа и нарушений микробиоценоза кишечника у детей // Клінічна педіатрія. — 2016. — № 6(74). — 10-17.

138. Квашніна Л., Радіонов В. Корекція дисбіоза кишечника у процесі реабілітації дітей молодшого шкільного віку після інфекційних гастроентероколітів // Клінічна педіатрія. — 2012. — № 7(42). — С. 134-138.

139. Подольский Вл., Подольский В. Лікування змін мікробіоценозу урогенітальних органів у жінок з порушеннями вегетативного гомеостазу та змінами репродуктивного здоров’я // Здоровье женщины. — 2015. — № 10(106). — С. 125-128.

140. https://www.ncbi.nlm.nih.gov/genome

141. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4223449/

142. www.fda.gov/grasnoticeinventor

143. www.who.int


Вернуться к номеру