Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Международный неврологический журнал Том 18, №8, 2022

Вернуться к номеру

Актуальні питання діагностики та лікування деменції різного генезу

Авторы: Тріщинська М.А. (1), Інгула Н.І. (2), Кононов О.Є. (1)
(1) — Національний університет охорони здоров’я України імені П.Л. Шупика, м. Київ, Україна
(2) — Комунальне некомерційне підприємство Київської обласної ради «Київська обласна клінічна лікарня», м. Київ, Україна

Рубрики: Неврология

Разделы: Справочник специалиста

Версия для печати


Резюме

Поширеність захворювань нервової системи з порушеннями когнітивних функцій постійно зростає та сягає 4,6 мільйона нових випадків на рік у всьому світі. Процеси старіння в головному мозку характеризуються низкою змін, які включають порушення локального метаболізму, регіонарного кровопостачання та доступності нейромедіаторів, що призводить до прогресуючого погіршення формування та збереження інформації — порушення пам’яті. Відомо про існування певної залежності пам’яті та когнітивних здібностей від ступеня повноти холінергічної передачі. Кореляційний зв’язок між ацетилхоліном, пам’яттю та когнітивними здібностями був доведений на нейрохімічному рівні. Встановлено, що холінергічна система відіграє головну роль у процесах навчання та пам’яті. За даними, отриманими з різних джерел, ступінь вираженості поліпшення когнітивних функцій, досягнутий при лікуванні за допомогою холіну альфосцерату, був, як правило, високим. Контрольовані клінічні дослідження продемонстрували ефективність холіну альфосцерату в клінічних ситуаціях, пов’язаних з когнітивними розладами, які спричинені деменцією як дегенеративного, так і судинного походження. Встановлена користь холіну альфосцерату у зменшенні таких когнітивних розладів, як порушення пам’яті чи уваги, відрізняє цей препарат від попередників ацетилхоліну, які застосовувалися у ранніх клінічних дослідженнях.

The prevalence of the nervous system diseases with impaired cognitive functions is constantly increasing and reaches 4.6 million new cases per year worldwide. Aging processes in the brain are characterized by a number of changes, including disturbances in local metabolism, regional blood supply and availability of neurotransmitters, which leads to a progressive deterioration in the formation and preservation of information — memory impairment. It is known that there is a certain dependence of memory and cognitive abilities on the level of completeness of cholinergic transmission. Correlation between acetylcholine, memory and cognitive abilities has been proven at the neurochemical level. It has been found that the cholinergic system plays a major role in learning and memory processes. According to data obtained from various sources, the degree of improvement in cognitive functions obtained during choline alfoscerate treatment was, as a rule, high. Controlled clinical trials have demonstrated the effectiveness of choline alfoscerate in clinical situations associated with cognitive disorders caused by dementia of both degenerative and vascular origin. The proven benefit of choline alfoscerate in reducing cognitive disorders such as memory or attention deficits distinguishes this drug from the acetylcholine precursors used in early clinical trials.


Ключевые слова

когнітивні розлади; хвороба Альцгеймера; судинна деменція; холіну альфосцерат

cognitive disorders; Alzheimer’s disease; vascular dementia; choline alfoscerate


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C., et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011. 7. 270-279. doi: 10.1016/j.jalz.2011.03.008.
2. Amenta F., Carotenuto A., Fasanaro A.M., Rea R., Traini E. The ASCOMALVA trial: Association between the cholinesterase inhibitor donepezil and the cholinergic precursor choline alphoscerate in Alzheimer’s disease with cerebrovascular injury: Interim results. 
J. Neurol. Sci. 2012. 322. 96-101. doi: 10.1016/j.jns.2012.07.003.
3. Amenta F., Carotenuto A., Fasanaro A.M., Rea R., Traini E. The ASCOMALVA (Association between the Cholinesterase Inhibitor Donepezil and the Cholinergic Precursor Choline Alphoscerate in Alz-heimer’s Disease) Trial: Interim results after two years of treatment. J. Alzheimers Dis. 2014. 42. S281-288. doi: 10.3233/JAD-140150.
4. Amenta F., Parnetti L., Gallai V., Wallin A. Treatment of cholinergic dysfunction associated with Alzheimer’s disease with cholinergic precursors. Ineffective treatments or inappropriate approaches? Mech. Ageing Dev. 2001. 122. 2025-2040. doi: 10.1016/s0047-6374(01)00310-4.
5. Amenta F., Tayebati S.K., Vitali D., Di Tullio M.A. Association with the cholinergic precursor choline alphoscerate and the cholinesterase inhibitor rivastigmine: An approach for enhancing cholinergic neurotransmission. Mech. Ageing Dev. 2006. 127. 173-179. doi: 10.1016/j.mad.2005.09.017.
6. Birks J. Cholinesterase inhibitors for Alzheimer’s dise-ase. Cochrane Database Syst. Rev. 2006. 1. CD005593. doi: 10.1002/14651858.CD005593.
7. Birks J., Harvey R. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst. Rev. 2006. 1. CD001190. doi: 10.1002/14651858.CD001190.pub3.
8. Brashear H.R. Galantamine in the treatment of vascular dementia. Int. Psychogeriatr. 2003. 15. 187-193. doi: 10.1017/S1041610203009189.
9. Caccamo A., Oddo S., Billings L.M., Green K.N., Martinez- Coria H., Fisher A., LaFerla F.M. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron. 2006. 49. 671-682. doi: 10.1016/j.neuron.2006.01.020.
10. Carotenuto A., Rea R., Traini E., Fasanaro A.M., Ricci G., Manzo V., Amenta F. The effect of the association between donepezil and choline alphoscerate on behavioral disturbances in Alzheimer’s disease: Interim results of the ASCOMALVA Trial. J. Alzheimers Dis. 2017. 56. 805-815. doi: 10.3233/JAD-160675.
11. Cavedo E., Boccardi M., Ganzola R., Canu E., Beltramello A., Caltagirone C., Thompson P.M., Frisoni G.B. Local amygdala structural differences with 3T MRI in patients with Alzheimer disease. Neurology. 2011. 76. 727-733. doi: 10.1212/WNL.0b013e31820d62d9.
12. Cavedo E., Pievani M., Boccardi M., Galluzzi S., Bocchetta M., Bonetti M., Thompson P.M., Frisoni G.B. Medial temporal atrophy in early and late-onset Alzheimer’s disease. Neurobiol. Aging. 2014. 35. 2004-2012. doi: 10.1016/j.neurobiolaging.2014.03.009.
13. De Bruin N.M., Kiliaan A.J., De Wilde M.C., Broersen L.M. Combined uridine and choline administration improves cognitive deficits in spontaneously hypertensive rats. Neurobiol. Learn Mem. 2003. 80. 63-79. doi: 10.1016/s1074-7427(03)00024-8.
14. De Jesus Moreno Moreno M. Cognitive improvement in mild-to-moderate Alzheimer’s dementia after treatment with acetylcholine precursor choline alfoscerate: a multicenter, double-blind, randomized, placebo-controlled trial. Clin. Ther. 2003. 25. 178-193. doi: 10.1016/S0149-2918(03)90023-3.
15. De Lacalle S., Cooper J.D., Svendsen C.N., Dunnett S.B., Sofroniew M.V. Reduced retrograde labeling with fluorescent tracer accompanies neuronal atrophy of basal forebrain cholinergic neurons in aged rats. Neuroscience. 1996. 75. 19-27. doi: 10.1016/0306-4522(96)00239-4.
16. Deiana S., Platt B., Riedel G. The cholinergic system and spatial learning. Behav. Brain Res. 2010 Nov 23 [Epub ahead of print]. doi: 10.1016/j.bbr.2010.11.036.
17. Ellis J.R., Ellis K.A., Bartholomeusz C.F., Harrison B.J., Wesnes K.A., Erskine F.F., et al. Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int. J. Neuropsychopharmacol. 2006. 9. 175-189. doi: 10.1017/S1461145705005407.
18. Traini E., Carotenuto A., Fasanaro A.M., Amenta F. Volume Analysis of Brain Cognitive Areas in Alzheimer’s Disease: Interim 3-Year Results from the ASCOMALVA Trial. Journal of Alzheimer’s Disease. 2020. 76. 317-329. doi: 10.3233/JAD-190623.
19. Everitt B.J., Robbins T.W. Central cholinergic systems and cognition. Annu Rev. Psychol. 1997. 48. 649-684. doi: 10.1146/annurev.psych.48.1.649.
20. Gauthier S., Feldman H., Hecker J., Vellas B., Emir B., Subbiah P. Donepezil MSAD StudyInvestigators’Group. Functional, cognitive and behavioral effects of donepezil in patients with moderate Alzheimer’s disease. Curr. Med. Res. Opin. 2002. 18. 347-354. doi: 10.1185/030079902125001029.
21. Geerts H., Grossberg G.T. Pharmacology of acetylcholinesterase inhibitors and N-methyl-D-aspartate receptors for combination therapy in the treatment of Alzheimer’s disease. J. Clin. Pharmacol. 2006. 46. 8S-16S. doi: 10.1177/0091270006288734.
22. Giacobini E. Cholinergic foundation of Alzheimer’s disease therapy. J. Physiol. Paris. 1998. 92. 283-287. doi: 10.1016/S0928-4257(98)80034-X.
23. Grantham C., Geerts H. The rationale behind cholinergic drug treatment for dementia related to cerebrovascular disease. J. Neurol. Sci. 2002. 203-204. 131-136. doi: 10.1016/s0022-510x(02)00274-5.
24. Härtig W., Bauer A., Brauer K. et al. Functional recovery of cholinergic basal forebrain neurons under disease conditions: old problems, new solutions? Rev. Neurosci. 2002. 13. 95-165. doi: 10.1515/revneuro.2002.13.2.95.
25. Havekes R., Abel T., Van der Zee E.A. The cholinergic system and neostriatal memory functions. Behav. Brain Res. 2010. 221(2). 412-23. doi: 10.1016/j.bbr.2010.11.047.
26. Higgins J.P., Flicker L. Lecithin for dementia and cognitive impairment. Cochrane Database Syst. Rev. 2003. CD001015. doi: 10.1002/14651858.CD001015.
27. Hoffmeister P.G., Donat C.K., Schuhmann M.U., Voigt C., Walter B., Nieber K., Meixensberger J., Bauer R., Brust P. Traumatic brain injury elicits similar alterations in a7 nicotinic receptor density in two different experimental models. Neuromolecular Med. 2011. 13. 44-53. doi: 10.1007/s12017-010-8136-4.
28. Jack C.R. Jr, Holtzman D.M Biomarker modeling of Alzheimer’s disease. Neuron. 2013. 80. 1347-1358. doi: 10.1016/j.neuron.2013.12.003.
29. Jack C.R. Jr, Shiung M.M., Gunter J.L., O’Brien P.C., Weigand S.D., Knopman D.S., et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology. 2004. 62. 591-600. doi: 10.1212/01.wnl.0000110315.26026.ef.
30. Jack C.R., Jr, Albert M.S., Knopman D.S., McKhann G.M., Sperling R.A., Carrillo M.C., Thies B., Phelps C.H. Introduction to the recommendations from the National Institute on Aging-Alzhei-mer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011. 7. 257-262. doi: 10.1016/j.jalz.2011.03.004.
31. Kaduszkiewicz H., Zimmermann T., Beck-Bornholdt H.P., van den Bussche H. Cholinesterase inhibitors for patients with Alz-heimer’s disease: Systematic review of randomised clinical trials. BMJ. 2005. 331. 321-327. doi: 10.1136/bmj.331.7512.321.
32. Keenan H.T., Bratton S.L. Epidemiology and outcomes of pediatric traumatic brain injury. Dev. Neurosci. 2006. 28. 256-263. doi: 10.1159/000094152.
33. Khan T.K. An algorithm for preclinical diagnosis of Alzheimer’s disease. Front Neurosci. 2018. 12. 275. doi: 10.3389/fnins.2018.00275.
34. Kiewert C., Mdzinarishvili A., Hartmann J., Bickel U., Klein J. Metabolic and transmitter changes in core and penumbra after middle cerebral artery occlusion in mice. Brain Res. 2010. 1312. 101-107. doi: 10.1016/j.brainres.2009.11.068.
35. Kimura S., Saito H., Minami M. et al. Pathogenesis of vascular dementia in stroke-prone spontaneously hypertensive rats. Toxicology. 2000. 153. 167-178. doi: 10.1016/s0300-483x(00)00312-7.
36. Laakso M.P., Hallikainen M., Hanninen T., Partanen K., Soininen H. Diagnosis of Alzheimer’s disease: MRI of the hippocampus vs delayed recall. Neuropsychologia. 2000. 38. 579-584. doi: 10.1016/s0028-3932(99)00111-6.
37. Lin H., Vicini S., Hsu F.C., Doshi S., Takano H., Coulter D.A., Lynch D.R. Axonal α7 nicotinic ACh receptors modulate presynaptic NMDA receptor expression and structural plasticity of glutamatergic presynaptic boutons. Proc. Natl. Acad. Sci. USA. 2010. 107. 16661-16666. doi: 10.1073/pnas.1007397107.
38. Liskowsky W., Schliebs R. Muscarinic acetylcholine receptor inhibition in transgenic Alzheimer-like Tg2576 mice by scopolamine favours the amyloidogenic route of processing of amyloid precursor protein. Int. J. Dev. Neurosci. 2006. 24. 149-156. doi: 10.1016/j.ijdevneu.2005.11.010.
39. McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R. Jr, Kawas C.H., et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011. 7. 263-269. doi: 10.1016/j.jalz.2011.03.005.
40. Mohandas E., Rajmohan V., Raghunath B. Neurobiology of Alzheimer’s disease. Indian J. Psychiatry. 2009. 51(1). 55-61. doi: 10.4103/0019-5545.44908.
41. Müller W.E., Stoll L., Schubert T., Gelbmann C.M. Central cholinergic functioning and aging. Acta Psychiatr. Scand. Suppl. 1991. 366. 34-39. doi: 10.1111/j.1600-0447.1991.tb03107.x.
42. Niewiadomska G., Baksalerska-Pazera M., Riedel G. Cytoskeletal transport in the aging brain: focus on the cholinergic system. Rev. Neurosci. 2006. 17. 581-618. doi: 10.1515/revneuro.2006.17.6.581.
43. Parnetti et al. Choline alphoscerate in cognitive decline and in acute cerebrovascular disease: an analysis of published clinical data. Mechanisms of Ageing and Deelopment. 2001. 122. 2041-2055. doi: 10.1016/s0047-6374(01)00312-8.
44. Parnetti L., Mignini F., Tomassoni D., Traini E., Amenta F. Cholinergic precursors in the treatment of cognitive impairment of vascular origin: Ineffective approaches or need for reevaluation? J. Neurol. Sci. 2007. 257. 264-269. doi: 10.1016/j.jns.2007.01.043.
45. Perl D.P. Neuropathology of Alzheimer’s disease. Mt Sinai J. Med. 2010. 77. 32-42. doi: 10.1002/msj.20157.
46. Prestia A., Boccardi M., Galluzzi S., Cavedo E., Adorni A., Soricelli A., et al. Hippocampal and amygdalar volume changes in elderly patients with Alzheimer’s disease and schizophrenia. Psychiatry Res. 2011. 192. 77-83. doi: 10.1016/j.pscychresns.2010.12.015.
47. Ringman J.M., Cummings J.L. Current and emerging pharmacological treatment options for dementia. Behav. Neurol. 2006. 17. 5-16. doi: 10.1155/2006/315386.
48. Robinson L., Platt B., Riedel G. Involvement of the cholinergic system in conditioning and perceptual memory. Behav. Brain Res. 2011. 221(2). 443-65. doi: 10.1016/j.bbr.2011.01.055.
49. Román G.C. Vascular dementia: Distinguishing characteristics, treatment, and prevention. J. Am. Geriatr. Soc. 2003. 51. S296-304. doi: 10.1046/j.1532-5415.5155.x.
50. Schaeffer E.L., Gattaz W.F. Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: Participation of the phospholipase A2 enzyme. Psychopharmacology (Berl). 2008. 198. 1-27. doi: 10.1007/s00213-008-1092-0.
51. Serrano-Pozo A., Frosch M.P., Masliah E., Hyman B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011. 1. a006189. doi: 10.1101/cshperspect.a006189.
52. Shimizu S., Hirose D., Hatanaka H., Takenoshita N., Kaneko Y., Ogawa Y., Sakurai H., Hanyu H. Role of neuroimaging as a biomarker for neurodegenerative diseases. Front Neurol. 2018. 9. 265. doi: 10.3389/fneur.2018.00265.
53. Sigala S., Imperato A., Rizzonelli P., Casolini P., Missale C., Spano P.F. L-alpha-glycerylphosphorylcholine antagonizes scopolamine-induced amnesia and enhances hippocampal cholinergic transmission in the rat. Eur. J. Pharmacol. 1992. 21. 351-358. doi: 10.1016/0014-2999(92)90392-h.
54. Small S.A., Chawla M.K., Buonocore M., Rapp P.R., Barnes C.A. Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion differentially vulnerable to aging. Proc. Natl. Acad. Sci. USA. 2004. 101. 7181-7186. doi: 10.1073/pnas.0400285101.
55. Tayebati S.K., Di Tullio M.A., Tomassoni D., Amenta F. Neuroprotective effect of treatment with galantamine and choline alphoscerate on brain microanatomy in spontaneously hypertensive rats. J. Neurol. Sci. 2009. 283. 187-194. doi: 10.1016/j.jns.2009.02.349.
56. Tayebati S.K., Tomassoni D., Di Stefano A., Sozio P., Cerasa L.S., Amenta F. Effect of choline-containing phospholipids on brain cholinergic transporters in the rat. J. Neurol. Sci. 2011. 302. 49-57. doi: 10.1016/j.jns.2010.11.028.
57. Terry A.V. Jr, Buccafusco J.J. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 2003. 306. 821-827. doi: 10.1124/jpet.102.041616.
58. Tomassoni D., Avola R., Mignini F., Parnetti L., Amenta F. Effect of treatment with choline alphoscerate on hippocampus microanatomy and glial reaction in spontaneously hypertensive rats. Brain Res. 2006. 1120. 183-190. doi: 10.1016/j.brainres.2006.08.068.
59. Traini E., Bramanti V., Amenta F. Choline alphoscerate (alpha-glyceryl-phosphoryl-choline) an old choline containing phospholipid with a still interesting profile as cognition enhancing agent. Curr. Alzheimer Res. 2013. 10. 1070-1079. doi: 10.2174/15672050113106660173.
60. van Dam P.S., Aleman A., de Vries W.R. et al. Growth hormone, insulin-like growth factor I and cognitive function in adults. Growth Horm. IGF Res. 2000. 10 Suppl B. S 69-73. doi: 10.1016/s1096-6374(00)80013-1.
61. Vinters H.V., Ellis W.G., Zarow C. et al. Neuropathologic substrates of ischemic vascular dementia. J. Neuropathol. Exp. Neurol. 2000. 59. 931-945. doi: 10.1093/jnen/59.11.931.
62. Williams B., Granholm A.C., Sambamurti K. Age-dependent loss of NGF signaling in the rat basal forebrain is due to disrupted MAPK activation. Neurosci. Lett. 2007. 413. 110-114. doi: 10.1016/j.neulet.2006.11.040.
63. Wu J., Ishikawa M., Zhang J., Hashimoto K. Brain imaging of nicotinic receptors in Alzheimer’s disease. Int. J. Alzheimers Dis. 2010. 548913. doi: 10.4061/2010/548913.

Вернуться к номеру