Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Журнал "Травма" Том 24, №4, 2023

Повернутися до номеру

Багатофункціональні можливості СО2 для забезпечення фармакодинаміки карбокситерапії

Автори: Штробля В.В. (1), Філіп С.С. (1), Луценко Р.В. (2)
(1) - ДВНЗ «Ужгородський національний університет», м. Ужгород, Україна
(2) - Полтавський державний медичний університет, м. Полтава, Україна

Рубрики: Травмотологія та ортопедія

Розділи: Довідник фахівця

Версія для друку


Резюме

Актуальність. Щоб ідентифікувати потенційні можливості карбокситерапії, потрібно оцінити значення різних сигнальних механізмів чутливості організму до СО2 та узагальнити знання про клітинні та молекулярні механізми організму, що лежать в основі корисних та безпечних ефектів карбокситерапії. Підвищений рівень CO2 активує механізми, що переводять гіпоксію в режим виживання та фізіологічного гомеостазу. Баланс між прозапальною і протизапальною фазами при запаленні також зміщується у бік гомеостазу, коли тканинний рівень CO2 підвищується, що дуже важливо для загоєння ран і переломів. Фізіологічні властивості СО2 забезпечують оксигенацію, посилення процесів ангіогенезу, мітохондріального біогенезу, кровотоку в тканинах, протизапальну дію та зниження окиснювального стресу. Ці властивості СО2 обумовлюють потенційне використання карбокситерапії як терапевтичного підхіду при тканинній гіпоксії, для прискорення відновлення тканин та зменшення запалення. Методи: пошук наукової інформації про можливості СО2 в медицині проведений в електронних базах PubMed, Google Scholar. Результати. Проаналізовані дані літератури щодо досліджень СО2, спрямованих на механізми фармакологічної дії карбокситерапії, які вивчалися на моделях тварин in vivo і в дослідженнях за участю людей. Висновки. У цьому огляді наведені наукові дані, які підтверджують клінічні переваги при застосуванні терапевтичної дії CO2 (карбокситерапії).

Background. To identify potential opportunities for carboxytherapy, it is necessary to assess the importance of various signaling mechanisms of sensitivity to СО2 and summarize the knowledge about the cellular and molecular mechanisms underlying the beneficial and safe effects of carboxytherapy. High level of СО2 activates the mechanisms that convert hypoxia into the mode of survival and physiological homeostasis. The balance between the pro-inflammatory and anti-inflammatory phases in inflammation also shifts towards homeostasis when tissue СО2 level increases, which is very important for wound and fracture healing. The physiological properties of СО2 provide oxygenation, enhancement of angiogenesis, mitochondrial biogenesis, blood flow in tissues, anti-inflammatory effect, and reduction of oxidative stress. These pro-perties of СО2 determine the potential use of carboxytherapy as a therapeutic approach in tissue hypoxia, to accelerate tissue repair and reduce inflammation. Methods. Тhe search for scientific information on the possibilities of СО2 in medicine was conducted in the PubMed and Google Scholar electronic databases. Results. Literature data on СО2 studies aimed at the mechanisms of pharmacological action of carboxytherapy were found, which have been investigated in animal models in vivo and in research with human participants. Conclusions. This review presents the scientific evidence supporting the clinical benefits of therapeutic exposure to СО2 (carboxytherapy).


Ключові слова

СО2; карбокситерапія; ангіогенез; гіпоксія; ефект Бора

СО2; carboxytherapy; angiogenesis; hypoxia; Bohr effect


Для ознайомлення з повним змістом статті необхідно оформити передплату на журнал.


Список літератури

1. Дроговоз С., Калько К., Сырова Г., Столетов Ю.В., Борисюк И., Коваленко Д.В. и др. Универсальность карбокситерапии в патогенетической терапии. Pharmacologyonline. 2021. (3). 1522-1531. 
2. Ahramiyanpour N., Shafie’ei M., Sarvipour N., Amiri R., Akbari Z. Carboxytherapy in dermatology: A systematic review. Journal of Cosmetic Dermatology. 2022. 21(5). 1874-1894. https://doi.org/10.1111/jocd.14834. 
3. Akahane S., Sakai Y., Ueha T., Nishimoto H., Inoue M., Niikura T., et al. Transcutaneous carbon dioxide application accelerates muscle injury repair in rat models. International Оrthopaedics. 2017. 41(5). 1007-1015. https://doi.org/10.1007/s00264-017-3417-2. 
4. Amano-Iga R., Hasegawa T., Takeda D., Murakami A., Yatagai N., Saito I., et al. Local Application of Transcutaneous Carbon Dioxide Paste Decreases Inflammation and Accelerates Wound Healing. Cureus. 2021. 13(11). e19518. https://doi.org/10.7759/cureus.19518. 
5. Barrientos S., Stojadinovic O., Golinko M.S., Brem H., Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair аnd Regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2008. 16(5). 585-601. https://doi.org/10.1111/j.1524-475X.2008.00410.x. 
6. Baum C.L., Arpey C.J. Normal cutaneous wound hea–ling: clinical correlation with cellular and molecular events. Dermatologic Surgery: official publication for American Society for Dermatologic Surgery [et al.]. 2005. 31(6). 674-686. https://doi.org/10.1111/j.1524-4725.2005.31612. 
7. Bolevich S., Kogan A.H., Zivkovic V., Djuric D., Novikov A.A., Vorobyev S.I., et al. Protective role of carbon dioxide (CO2) in generation of reactive oxygen species. Molecular and Cellular Biochemistry. 2016. 411(1-2). 317-330. https://doi.org/10.1007/s11010-015-2594-9. 
8. Contreras M., Masterson C., Laffey J.G. Permissive hypercapnia: what to remember. Current Opinion іn Anaesthesiology. 2015. 28(1). 26-37. https://doi.org/10.1097/ACO.0000000000000151. 
9. Crystal G.J. Carbon Dioxide and the Heart: Physiology and Clinical Implications. Anesthesia and Аnalgesia. 2015. 121(3). 610-623. https://doi.org/10.1213/ANE.0000000000000820. 
10. Cummins E.P., Oliver K.M., Lenihan C.R., Fitzpatrick S.F., Bruning U., Scholz C.C., et al. NF-κB links CO2 sen–sing to innate immunity and inflammation in mammalian cells. Journal of Immunology (Baltimore, Md.: 1950). 2010. 185(7). 4439-4445. https://doi.org/10.4049/jimmunol.1000701. 
11. Dogliotti G., Galliera E., Iorio E., De Bernardi Di Valserra M., Solimene U., Corsi M.M. Effect of immersion in CO2-enriched water on free radical release and total antioxidant status in peripheral arterial occlusive disease. International Аngiology: a journal of the International Union of Angiology. 2011. 30(1). 12-17. 
12. Ferrara N., Gerber H.P., LeCouter J. The biology of VEGF and its receptors. Nature Medicine. 2003. 9(6). 669-676. https://doi.org/10.1038/nm0603-669. 
13. Hanly E.J., Fuentes J.M., Aurora A.R., Bachman S.L., De Maio A., Marohn M.R., et al. Carbon dioxide pneumoperitoneum prevents mortality from sepsis. Surgical Endoscopy. 2006. 20(9). 1482-1487. https://doi.org/10.1007/s00464-005-0246-y. 
14. Hartmann B.R., Bassenge E., Hartmann M. Effects of serial percutaneous application of carbon dioxide in intermittent claudication: results of a controlled trial. Angiology. 1997. 48(11). 957-963. https://doi.org/10.1177/000331979704801104. 
15. Inoue M., Sakai Y., Oe K., Ueha T., Koga T., Nishimoto H., et al. Transcutaneous carbon dioxide application inhibits muscle atrophy after fracture in rats. Journal of Orthopaedic Science: official journal of the Japanese Orthopaedic Association. 2020. 25(2). 338-343. https://doi.org/10.1016/j.jos.2019.03.024. 
16. Irie H., Tatsumi T., Takamiya M., Zen K., Takahashi T., Azuma A., et al. Carbon dioxide-rich water bathing enhances collateral blood flow in ischemic hindlimb via mobilization of endothelial progenitor cells and activation of NO-cGMP system. Circulation. 2005. 111(12). 1523-1529. https://doi.org/10.1161/01.CIR.0000159329.40098.66. 
17. Izumi Y., Yamaguchi T., Yamazaki T., Yamashita N., Nakamura Y., Shiota M., et al. Percutaneous carbon dioxide treatment using a gas mist generator enhances the collateral blood flow in the ischemic hindlimb. Journal of Atherosclerosis аnd Thrombosis. 2015. 22(1). 38-51. https://doi.org/10.5551/jat.23770. 
18. Katayama N., Sugimoto K., Okada T., Ueha T., Sakai Y., Akiyoshi H., et al. Intra-arterially infused carbon dioxide-saturated solution for sensitizing the anticancer effect of cisplatin in a rabbit VX2 liver tumor model. International Journal оf Oncology. 2017. 51(2). 695-701. https://doi.org/10.3892/ijo.2017.4056. 
19. Keogh C.E., Scholz C.C., Rodriguez J., Selfridge A.C., von Kriegsheim A., Cummins E.P. Carbon dioxide-dependent regulation of NF-κB family members RelB and p100 gives molecular insight into CO2-dependent immune regulation. The Journal of Biological Chemistry. 2017. 292(27). 11561-11571. https://doi.org/10.1074/jbc.M116.755090. 
20. Kierans S.J., Taylor C.T. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology. The Journal of Physiology. 2021. 599(1). 23-37. https://doi.org/10.1113/JP280572. 
21. Koga T., Niikura T., Lee S.Y., Okumachi E., Ueha T., Iwakura T., et al. Topical cutaneous CO2 application by means of a novel hydrogel accelerates fracture repair in rats. The Journal of Bone аnd Joint Surgery. American volume. 2014. 96(24). 2077-2084. https://doi.org/10.2106/JBJS.M.01498. 
22. Linthwaite V.L., Pawloski W., Pegg H.B., Townsend P.D., Thomas M.J., So V.K.H., et al. Ubiquitin is a carbon dioxide-binding protein. Science Advances. 2021. 7(39). eabi5507. https://doi.org/10.1126/sciadv.abi5507. 
23. Lopes Machado C., Lopes Machado M., Lourenço Lopes L. Analgesic Effect of Carboxytherapy for Postoperative Neuropathic Facial Pain: A Case Report. Cureus. 2022. 14(6). e26301. https://doi.org/10.7759/cureus.26301. 
24. Macura M., Ban Frangez H., Cankar K., Finžgar M., Frangez I. The effect of transcutaneous application of gaseous CO2 on diabetic chronic wound healing — A double-blind randomized clinical trial. International Wound Journal. 2020. 17(6). 1607-1614. https://doi.org/10.1111/iwj.13436. 
25. Matsumoto T., Tanaka M., Ikeji T., Maeshige N., Sakai Y., Akisue T., et al. Application of transcutaneous carbon dioxide improves capillary regression of skeletal muscle in hyperglycemia. The Journal оf Physiological Sciences: JPS. 2019. 69(2). 317-326. https://doi.org/10.1007/s12576-018-0648-y. 
26. Németh B., Kiss I., Ajtay B., Péter I., Kreska Z., Cziráki A., et al. Transcutaneous Carbon Dioxide Treatment Is Capable of Reducing Peripheral Vascular Resistance in Hypertensive Patients. In vivo (Athens, Greece). 2018. 32(6). 1555-1559. https://doi.org/10.21873/invivo.11414. 
27. Nemeth B., Kiss I., Jencsik T., Peter I., Kreska Z., Koszegi T., et al. Angiotensin-converting Enzyme Inhibition Improves the Effectiveness of Transcutaneous Carbon Dioxide Treatment. In vivo (Athens, Greece). 2017. 31(3). 425-428. https://doi.org/10.21873/invivo.11077. 
28. Niikura T., Iwakura T., Omori T., Lee S.Y., Sakai Y., Akisue T., et al. Topical cutaneous application of carbon dioxide via a hydrogel for improved fracture repair: results of phase I clinical safety trial. BMC Musculoskeletal Disorders. 2019. 20(1). 563. https://doi.org/10.1186/s12891-019-2911-7. 
29. Nishimoto H., Inui A., Ueha T., Inoue M., Akahane S., Harada R., et al. Transcutaneous carbon dioxide application with hydrogel prevents muscle atrophy in a rat sciatic nerve crush model. Journal of Orthopaedic Research: official publication of the Orthopaedic Research Society. 2018. 36(6). 1653-1658. https://doi.org/10.1002/jor.23817. 
30. Oda T., Iwakura T., Fukui T., Oe K., Mifune Y., Hayashi S., et al. Effects of the duration of transcutaneous CO2 application on the facilitatory effect in rat fracture repair. Journal of Orthopaedic Science: official journal of the Japanese Orthopaedic Association. 2020. 25(5). 886-891. https://doi.org/10.1016/j.jos.2019.09.017. 
31. Ogoh S., Nagaoka R., Mizuno T., Kimura S., Shidahara Y., Ishii T., et al. Acute vascular effects of carbonated warm water lower leg immersion in healthy young adults. Physiological Reports. 2016. 4(23). e13046. https://doi.org/10.14814/phy2.13046. 
32. Onishi Y., Akisue T., Kawamoto T., Ueha T., Hara H., Toda M., et al. Transcutaneous application of CO2 enhances the antitumor effect of radiation therapy in human malignant fibrous histiocytoma. International Journal оf Oncology. 2014. 45(2). 732-738. https://doi.org/10.3892/ijo.2014.2476. 
33. Rahimi N. The ubiquitin-proteasome system meets angiogenesis. Molecular Cancer Therapeutics. 2012. 11(3). 538-548. https://doi.org/10.1158/1535-7163.MCT-11-0555. 
34. Reglin B., Pries A.R. Metabolic control of microvascular networks: oxygen sensing and beyond. Journal of Vascular Research. 2014. 51(5). 376-392. https://doi.org/10.1159/000369460. 
35. Rivers R.J., Meininger C.J. The Tissue Response to Hypoxia: How Therapeutic Carbon Dioxide Moves the Response toward Homeostasis and Away from Instability. International Journal оf Molecular Sciences. 2023. 24(6). 5181. https://doi.org/10.3390/ijms24065181 20. 
36. Rodríguez C., Muñoz M., Contreras C., Prieto D. AMPK, metabolism, and vascular function. The FEBS Journal. 2021. 288(12). 3746-3771. https://doi.org/10.1111/febs.15863 
37. Rongione A.J., Kusske A.M., Kwan K., Ashley S.W., Reber H.A., McFadden D.W. Interleukin-10 protects against lethality of intra-abdominal infection and sepsis. Journal of Gastrointestinal Surgery: official journal of the Society for Surgery of the Alimentary Tract. 2000. 4(1). 70-76. https://doi.org/10.1016/s1091-255x(00)80035-9. 
38. Saito I., Hasegawa T., Ueha T., Takeda D., Iwata E., Arimoto S., et al. Effect of local application of transcutaneous carbon dioxide on survival of random-pattern skin flaps. Journal of Plastic, Reconstructive & Aesthetic Surgery: JPRAS. 2018. 71(11). 1644-1651. https://doi.org/10.1016/j.bjps.2018.06.010. 
39. Sakai Y., Miwa M., Oe K., Ueha T., Koh A., Niikura T., et al. A novel system for transcutaneous application of carbon dioxide causing an "artificial Bohr effect" in the human body. PloS One. 2011. 6(9). e24137. https://doi.org/10.1371/journal.pone.0024137 
40. Schmidt J., Monnet P., Normand B., Fabry R. Microcirculatory and clinical effects of serial percutaneous application of carbon dioxide in primary and secondary Raynaud’s phenomenon. VASA. Zeitschrift fur Gefasskrankheiten. 2005. 34(2). 93-100. https://doi.org/10.1024/0301-1526.34.2.93. 
41. Selfridge A.C., Cavadas M.A., Scholz C.C., Campbell E.L., Welch L.C., Lecuona E., et al. Hypercapnia Suppresses the HIF-dependent Adaptive Response to Hypoxia. The Journal of Biological Chemistry. 2016. 291(22). 11800-11808. https://doi.org/10.1074/jbc.M116.713941. 
42. Takeda D., Hasegawa T., Ueha T., Imai Y., Sakakibara A., Minoda M., et al. Transcutaneous carbon dioxide induces mitochondrial apoptosis and suppresses metastasis of oral squamous cell carcinoma in vivo. PloS One. 2014. 9(7). e100530. https://doi.org/10.1371/journal.pone.0100530. 
43. Toriyama T., Kumada Y., Matsubara T., Murata A., Ogino A., Hayashi H., et al. Effect of artificial carbon dioxide foot bathing on critical limb ischemia (Fontaine IV) in peripheral arterial disease patients. International Angiology: a journal of the International Union of Angiology. 2002. 21(4). 367-373. 
44. Veselá A., Wilhelm J. The role of carbon dioxide in free radical reactions of the organism. Physiological Research. 2002. 51(4). 335-339. 
45. Wollina U., Heinig B., Uhlemann C. Transdermal CO2 application in chronic wounds. The International Journal оf Lower Extremity Wounds. 2004. 3(2). 103-106. https://doi.org/10.1177/1534734604265142. 
46. Xu Y.J., Elimban V., Dhalla N.S. Carbon dioxide water-bath treatment augments peripheral blood flow through the development of angiogenesis. Canadian Journal оf Physiology аnd Pharmacology. 2017. 95(8). 938-944. https://doi.org/10.1139/cjpp-2017-0125. 
47. Xu Y.J., Elimban V., Bhullar S.K., Dhalla N.S. Effects of CO2 water-bath treatment on blood flow and angiogenesis in ischemic hind limb of diabetic rat. Canadian Journal оf Physio-logy аnd Pharmacology. 2018. 96(10). 1017-1021. https://doi.org/10.1139/cjpp-2018-0160. 
48. Yatagai N., Hasegawa T., Amano R., Saito I., Arimoto S., Takeda D., et al. Transcutaneous Carbon Dioxide Decreases Immunosuppressive Factors in Squamous Cell Carcinoma In Vivo. BioMed Research International. 2021. 2021. 5568428. https://doi.org/10.1155/2021/5568428. 

Повернутися до номеру